Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantitative assessment of optical losses in thin-film CdS/CdTe solar cells

Identifieur interne : 001639 ( Main/Repository ); précédent : 001638; suivant : 001640

Quantitative assessment of optical losses in thin-film CdS/CdTe solar cells

Auteurs : RBID : Pascal:12-0035153

Descripteurs français

English descriptors

Abstract

For the first time, based on the known optical constants of the materials (refractive index and extinction coefficient), calculations of optical losses in glass/transparent conducting oxide (TCO)/CdS/ CdTe solar cells have been carried out taking into account reflections at the interfaces and absorption in the TCO (it can be indium tin oxide (ITO) or SnO2:F) and CdS layers. It has been shown that the losses caused by reflections at the interfaces result in lowering the short-circuit current by ∼9 % whereas absorption in the TCO and CdS layers with the typical thicknesses lead to losses of 15-16% for glass/ SnO2/CdS/CdTe, and 22-24% for glass/ITO/CdS/CdTe solar cells. At 100% photoelectric conversion in the CdTe absorber layer, this corresponds to a loss in short-circuit current by ∼3 mA/cm2 due to reflection, and 4-7 mA/cm2 due to absorption at the glass/SnO2(or ITO)/CdS stack. Losses due to absorption in float glass and low-iron glasses are 3.3-3.5% and 0.6-0.7%, respectively.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0035153

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Quantitative assessment of optical losses in thin-film CdS/CdTe solar cells</title>
<author>
<name sortKey="Kosyachenko, L A" uniqKey="Kosyachenko L">L. A. Kosyachenko</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Chernivtsi National University</s1>
<s2>58012 Chernivtsi</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Ukraine</country>
<wicri:noRegion>Chernivtsi National University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grushko, E V" uniqKey="Grushko E">E. V. Grushko</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Chernivtsi National University</s1>
<s2>58012 Chernivtsi</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Ukraine</country>
<wicri:noRegion>Chernivtsi National University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mathew, X" uniqKey="Mathew X">X. Mathew</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico</s1>
<s2>Temixco, Morelos 62580</s2>
<s3>MEX</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Mexique</country>
<wicri:noRegion>Temixco, Morelos 62580</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0035153</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0035153 INIST</idno>
<idno type="RBID">Pascal:12-0035153</idno>
<idno type="wicri:Area/Main/Corpus">002434</idno>
<idno type="wicri:Area/Main/Repository">001639</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorbent material</term>
<term>Binary compound</term>
<term>Cadmium sulfide</term>
<term>Cadmium sulfide solar cells</term>
<term>Cadmium telluride solar cells</term>
<term>Cadmium tellurides</term>
<term>Conducting material</term>
<term>Extinction index</term>
<term>Float glass</term>
<term>ITO layers</term>
<term>Indium oxide</term>
<term>Iron</term>
<term>Optical constant</term>
<term>Optical losses</term>
<term>Refraction index</term>
<term>Short circuit currents</term>
<term>Thickness</term>
<term>Thin film</term>
<term>Tin addition</term>
<term>Tin oxide</term>
<term>Transparent material</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Perte optique</term>
<term>Cellule solaire cadmium sulfure</term>
<term>Cellule solaire cadmium tellurure</term>
<term>Constante optique</term>
<term>Indice réfraction</term>
<term>Indice extinction</term>
<term>Couche ITO</term>
<term>Addition étain</term>
<term>Courant court circuit</term>
<term>Epaisseur</term>
<term>Matériau absorbant</term>
<term>Couche mince</term>
<term>Verre flotté</term>
<term>Matériau conducteur</term>
<term>Matériau transparent</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Sulfure de cadmium</term>
<term>Tellurure de cadmium</term>
<term>Composé binaire</term>
<term>Fer</term>
<term>ITO</term>
<term>SnO2</term>
<term>CdS</term>
<term>CdTe</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Fer</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">For the first time, based on the known optical constants of the materials (refractive index and extinction coefficient), calculations of optical losses in glass/transparent conducting oxide (TCO)/CdS/ CdTe solar cells have been carried out taking into account reflections at the interfaces and absorption in the TCO (it can be indium tin oxide (ITO) or SnO
<sub>2</sub>
:F) and CdS layers. It has been shown that the losses caused by reflections at the interfaces result in lowering the short-circuit current by ∼9 % whereas absorption in the TCO and CdS layers with the typical thicknesses lead to losses of 15-16% for glass/ SnO
<sub>2/</sub>
CdS/CdTe, and 22-24% for glass/ITO/CdS/CdTe solar cells. At 100% photoelectric conversion in the CdTe absorber layer, this corresponds to a loss in short-circuit current by ∼3 mA/cm
<sup>2</sup>
due to reflection, and 4-7 mA/cm
<sup>2</sup>
due to absorption at the glass/SnO
<sub>2</sub>
(or ITO)/CdS stack. Losses due to absorption in float glass and low-iron glasses are 3.3-3.5% and 0.6-0.7%, respectively.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>96</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Quantitative assessment of optical losses in thin-film CdS/CdTe solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KOSYACHENKO (L. A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GRUSHKO (E. V.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MATHEW (X.)</s1>
</fA11>
<fA14 i1="01">
<s1>Chernivtsi National University</s1>
<s2>58012 Chernivtsi</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico</s1>
<s2>Temixco, Morelos 62580</s2>
<s3>MEX</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>231-237</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000505938480320</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>22 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0035153</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>For the first time, based on the known optical constants of the materials (refractive index and extinction coefficient), calculations of optical losses in glass/transparent conducting oxide (TCO)/CdS/ CdTe solar cells have been carried out taking into account reflections at the interfaces and absorption in the TCO (it can be indium tin oxide (ITO) or SnO
<sub>2</sub>
:F) and CdS layers. It has been shown that the losses caused by reflections at the interfaces result in lowering the short-circuit current by ∼9 % whereas absorption in the TCO and CdS layers with the typical thicknesses lead to losses of 15-16% for glass/ SnO
<sub>2/</sub>
CdS/CdTe, and 22-24% for glass/ITO/CdS/CdTe solar cells. At 100% photoelectric conversion in the CdTe absorber layer, this corresponds to a loss in short-circuit current by ∼3 mA/cm
<sup>2</sup>
due to reflection, and 4-7 mA/cm
<sup>2</sup>
due to absorption at the glass/SnO
<sub>2</sub>
(or ITO)/CdS stack. Losses due to absorption in float glass and low-iron glasses are 3.3-3.5% and 0.6-0.7%, respectively.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Perte optique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Optical losses</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Cellule solaire cadmium sulfure</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Cadmium sulfide solar cells</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Cellule solaire cadmium tellurure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Cadmium telluride solar cells</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Constante optique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Optical constant</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Constante óptica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Indice réfraction</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Refraction index</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Indice refracción</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Indice extinction</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Extinction index</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Indice extinción</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Couche ITO</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>ITO layers</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Courant court circuit</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Short circuit currents</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Epaisseur</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Thickness</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Espesor</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Matériau absorbant</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Absorbent material</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Material absorbente</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Verre flotté</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Float glass</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Vidrio flotado</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Matériau conducteur</s0>
<s5>24</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Conducting material</s0>
<s5>24</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Material conductor</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Matériau transparent</s0>
<s5>25</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Transparent material</s0>
<s5>25</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Material transparente</s0>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>26</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>26</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>26</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>27</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>27</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>27</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Sulfure de cadmium</s0>
<s5>28</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Cadmium sulfide</s0>
<s5>28</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Cadmio sulfuro</s0>
<s5>28</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Tellurure de cadmium</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Cadmium tellurides</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Composé binaire</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Binary compound</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Compuesto binario</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Fer</s0>
<s2>NC</s2>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Iron</s0>
<s2>NC</s2>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Hierro</s0>
<s2>NC</s2>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>SnO2</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>CdS</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>CdTe</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fN21>
<s1>016</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001639 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001639 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0035153
   |texte=   Quantitative assessment of optical losses in thin-film CdS/CdTe solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024